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Chapter 1

Introduction

In mathematics, the existence of solution is same as the existence of fixed point of a

corresponding map. Fixed point theory gives suitable conditions for the existence

of solution of a problem. Therefore fixed point has broad importance in certain

fields of mathematics and other sciences, for example many problems in different

fields of sciences can be transformed into the “ problem of fixed point”. The theory

is also an attractive mixture of pure and applied mathematics including topology

and geometry. In the study of non-linear analysis fixed point theory is considered

as a fundamental tool.

In the beginning, it was considered that the fixed point theory is pure analytical

theory, later on the theory can be classified into different fields that are metric,

discrete and topological fixed point theory. Banach fixed point theorem [8] or

Banach contraction principle is supposed to be the most valuable and adaptable

consequence in metric fixed point theory. Banach fixed point theorem stats as,

“ On a complete metric space, a contraction mapping has a unique fixed point.

More precisely, (X, d) is a complete metric space and T is a self map on X such

that,

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X,α ∈ [0, 1)

Then T has a fixed point”.

1
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This theorem is the most important result in mathematical analysis. A number

of researchers in mathematics [11], [14], [17], [37], [43] are fascinated to Banach

contraction principle by virtue of its simplification and generalization.

Zadeh[55] esteblished the idea of fuzzy sets in 1965. Fuzzy control seems to be the

most useful tool from application point of view. For the applications, where the

exact quantitative representation of some particular samples is inappropriate or

impossible, the implementation of fuzzy theory seems to be an easy and convinent.

Hence, for real time performance in many models designes we often find the use

of fuzzy methods. There are many applications of fuzzy objects and methods in-

cluding regulation, production control, household applience and music [28]. Fuzzy

logics and approximate reasoning related to fuzzy logic are the theoretical and

methodoligical background of fuzzy mathematics.

In this work, we deals with the aspects of fuzzy mappings. The fuzzy mappings

are considered as functions, that alocate a fuzzy set to an element defined on a

given domain. Then introduction of the notion of fuzzy mappings is given by

the Heilpern [22], he also proved the fixed point theorem for fuzzy mappings in

the settings of metric spaces that is the extended form of the Banach contraction

principle. Later on, a variety of papers are seen on fixed point theorems for

fuzzy mappings that satisfied the contractive conditions, some of these papers

are [32], [34], [41]. For the the applications of integral equations and partial

differential equations, a number of Mathematicians and Engineers focused on fixed

point results for fuzzy mappings. Fuzzy control seems to be the most useful from

application point of view.

The notion of b-metric space was first appeared in the work of Bakhtin [9], then

used by Czerwik [47]. M.Boriceanu [30] also found examples and some fixed point

theorems in b-metric spaces. Afterward, variational principle in b-metric spaces

is formulated by Ekeland [31] in 1974. In the proof of fixed point theorem in

complete metric space, Ekeland’s variational principle is used as a main tool.

Recently, many authors developed fixed point theory in b-metric spaces. Some of

these authors [16], [29] and [52] focused on the topological properties of b- metric
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spaces, which proved the concept that every b- metric space defined on a topology

which is induced by the convergent of b-metric space is the semi-metrizable space.

Therefore, the use of different aspects of b- metric space in literature is obvious.

Note that, ‘a b- metric space is always considered to be a topological space in the

sense of topology which is induced by the convergent of b- metric space’.

In this thesis, several papers are reviewed which are mentioned above but our main

focus is on paper titled as “Common fixed point theorems for fuzzy mappings in

metric space” by T. Kamran [23]. This paper is the corrected form of paper [1].

After detailed study of litrature related to this paper [23] we extended the results

in the settings of b- metric spaces.

Rest of the thesis is detailed as follows:

• Chapter 2; includes basic tools about metric spaces, b- metric spaces, fixed

point and fuzzy mappings.

• Chapter 3; is about literature review and detailed study of common fixed point

theorems for fuzzy mappings in metric spaces.

• Chapter 4; is the extension of the results of Chapter 3 from metric spaces to

b-metric spaces.



Chapter 2

Preliminaries

In this chapter,we discuss some basic definitions and concept which we have to

use in this thesis. Section 2.1 covers some basics of metric space and examples of

various concepts. Section 2.2 concerns with the study related to b-Metric spaces

and examples of b-metric space. This section also includes Cauchy sequences and

completeness criteria of b-metric spaces. Section 2.3 of this chapter deals with the

fixed points in metric space. Section 2.4 concerns with some types of mappings.

In the last Section, we focus on fuzzy mappings.

2.1 Metric Spaces

This section concerns with the definition and examples of metric space, bounded

and unbounded sets, supremum, infimum, maximum and minimum of sets, Haus-

dorff metric, sequences in metric space, Hausdorff metric, Cauchy sequence and

completeness of metric space.

Definition 2.1.1. (Metric Space)

A function d : X×X → R+ (where X denotes a non-empty set and the set of non-

negative real numbers is denoted by R+) is called metric ( or distance function),

if it satisfies the following properties.

4
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(M1): For any pair p1, p2 ∈ X, d(p1, p2) ≥ 0 and d(p1, p2) = 0⇔ p1 = p2

(M2): For any pair p1, p2 ∈ X, d(p1, p2) = d(p2, p1) (symmetric property)

(M3): For p1, p2, p3 ∈ X, d(p1, p2) ≤ d(p1, p2)+d(p2, p3) (Triangle inequality).

The pair (X, d) is then called a metric space on X.

Example 2.1.2. 1. (Real line R ) The set of all real numbers is denoted by R.

Define a metric d : R× R 7→ R as follows,

d(r1, r2) =| r1 − r2 |; ∀ r1, r2 ∈ R.

Then the pair (R, d) is a metric space and d is called the standard or usual

metric on R.

2. (Euclidean space Rn ) This space is also called n-dimensional Euclidean space

and can be obtained by taking all ordered n-tuples of real numbers,i.e,

x = (ξ1, ξ2, · · · , ξn), y = (η1, η2, · · · , ηn).

(Rn, d) is a metric space with Euclidean matric d defined as;

d(x, y) =
√

(ξ1 − η1)2 + · · ·+ (ξn − ηn)2.

3. (Function space C[a1, a2] ) The space of all real valued continuous functions

is denoted by C[a1, a2]

(where I = [a1, a2] is a closed interval of real numbers).

Define a metric d : C[a1, a2]× C[a1, a2]→ R by,

d(p, q) = max
t∈I
| p(t)− q(t) | .

Then (C[a1, a2], d) is a metric space and d is a metric on C[a1, a2].
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4. (`2 space) `2 space is also called Hilbert sequence space, the element of `2 is

a sequence x = (ξi), i = 1, 2, ˙...,∞ of numbers such that,

∞∑
i=1

| ξi |2<∞.

Define d : `2 × `2 → R by,

d(x, y) =

(
∞∑
i=1

| ξi − ηi |2
)1/2

.

Then the pair (`2, d) is a metric space.

Definition 2.1.3. (Bounded and Unbounded Sets)

Let A be a subset of real numbers R, then A is bounded if there exist a real number

M such that,

a ≤M ; for all a ∈ A.

The real number M is called upper bound of A. if there exist no such M , then

A is said to be unbounded from above. Let B be the set of all upper bounds of

A having the smallest number M . Then the number M is known to be the least

upper bound (l.u.b) or supremum of set A.

Furthermore, a set may or may not have a Supremum and if the supremum of a

set exists it will be unique.

The supremum M of a set A has the following properties.

(i) M must be the upper bound of A, i.e, a ≤M ∀a ∈ A.

(ii) For a small positive real number there exists a number a ∈ A such that,

a > M − ε
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A subset A of numbers R is called bounded bellow, if there exist real number m

such that,

m ≤ a; for all a ∈ A.

The real number m is called lower bound of A. In case if there exists no such m

then set A is called unbounded from below. Let B be the set of all lower bounds

of A having the smallest number m.

Then the number m is known as greatest lower bound or infimum of set A.

Moreover, a set may or may not have a infimum, if the infimum of a set exists it

will be unique. The infimum m of a set A has following properties:-

(i) m must be the lower bound of A, i.e,

m ≤ a, ∀ a ∈ A

(ii) For a small positive real number ε, there exist a number a ∈ A such that,

a < m+ ε

A bounded set is bounded above as well as bounded below for instance see the

following examples:

1- The set of natural numbers is denoted by N is bounded below but un-

bounded above, therefore it is not bounded and it has no supremum.

2. A set which contains finite numbers is bounded.

3. Infinite set A = {a : 0 ≤ a ≤ 2∀a ∈ Q} is bounded.

4. The set of real numbers is denoted by R; is not bounded.

Definition 2.1.4. (Partially Ordered Set)

A non-empty set U is called a Partially ordered set, if it satisfies following prop-

erties with binary operation �,
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∗ Reflexive; For each λ ∈ U ⇒ λ � λ,

∗ Antisymmetric; If λ � µ and µ � λ⇒ λ = µ, ∀λ, µ ∈ U,

∗ Transitive; If λ � µ and µ � ν ⇒ λ = ν, ∀λ, µ, ν ∈ U.

For example power set P (U) of a non-empty set U is partially ordered set. If each

member of set U is comparable then U is called chain or totally ordered set.

Definition 2.1.5. (Maximum and Minimum)

Let B = β1, β2, β3...βn be any set. If set B is in totally ordered set then largest and

smallest values of B are called maximum and minimum of B respectively, denoted

by max(B) or maxi(βi) and min(B) or mini(βi).

Definition 2.1.6. (Sequence)

A sequence is a set of elements of any nature that are ordered as are the natural

numbers 1, 2, 3, · · · , n, it can be written as x1, x2, · · · , xn or simply {xn}.

Definition 2.1.7. (Convergent Sequence)

Let (X, d) be a metric space, a sequence {xn} is said to be convergent, if there

exist an x ∈ X such that,

lim
n→∞

d(xn, x) = 0,

then x in known as limit of {xn} and written as,

lim
n→∞

xn = x or xn → x.

Definition 2.1.8. (Cauchy Sequence)

Let (X, d) be a metric space, a sequence {xn} is said to be if there exist a natural

number N for every ε > 0 such that,

d(xm, xn) < ε for each n,m > N.

Definition 2.1.9. (Complete Space)

A metric space X is said to be complete, if every Cauchy sequence in metric space
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X converges to a point in X.

For example, the real line R and the complex plan C are complete metric spaces.

Definition 2.1.10. (The Hausdorff distance)

Let A,B be the non-empty compact bounded subsets of X in a metric space (X, d)

Then the Hausdorff distance between A and B is given as,

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

(b, A)}

2.2 b-Metric Space

In 1989, Bakhtin [9] introduced the notion of b-metric space. Then several authors

did work on fixed point theory in b-metric spaces. In this section, we concern with

the definition, examples and other aspects related to b-metric spaces.

Definition 2.2.1. (b-Metric Space)

Let X be a non-empty set and let b ≥ 1 be a given real number, a function

db : X ×X 7→ R is called a b-metric, if it satisfies following properties;

(B1): For any pair r1, r2 ∈ X, db(r1, r2) = 0⇐⇒ r1 = r2.

(B2): For any pair r1, r2 ∈ X, db(r1, r2) = db(r2, r1).

(B3): For r1, r2, r3 ∈ X, db(r1, r3) ≤ b[db(r1, r2) + db(r2, r3)].

then the pair (X, db) is called a b-metric space. Where db is a b-metric on X.

Remark 2.2.2. If b = 1, then b-metric space will be a metric space.

Example 2.2.3. The set of real numbers R is a b-metric space with the metric

defined as,

db(u, v) =| u− v |2 ∀u, v ∈ R

where b = 2.
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Example 2.2.4. Let `p(R) be a set, where 0 < p < 1 and

`p(R) = {rk} ⊆ R;
∞∑
k=1

| rk |p<∞

with the metric db : R× R 7→ R defined as,,

db : `p(R)× `p(R) 7→ R

defined as,

db(r, s) = (
∞∑
k=1

| rk − sk |p)
1
p

then `p(R) is a b-metric space with b = 2
1
p > 1.

Example 2.2.5. The Lp[0, 1] where p lies between 0 and 1 for all Real Valued

Functions, u(z), z ∈ [0, 1] such that,

1∫
0

| u(z) |p<∞

along with the metric db : R× R 7→ R defined as,

d(u, v) =

 1∫
0

| u(z)− v(z) |p dz

1/p

for all u, v ∈ LP [0, 1],

then LP [0, 1] is a b-metric space with b = 21/p.

Example 2.2.6. Let Xb = {0, 1, 2} with the metric db : Xb ×Xb 7→ R defined as,

db(0, 0) = db(1, 1) = db(2, 2) = 0

db(0, 1) = db(1, 0) = db(1, 2) = db(2, 1) = 1

Also db(2, 0) = db(0, 2) = t
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where t ∈ R and t ≥ 2, therefore,

db(u, v) ≤ t

2
[db(u,w) + db(w, u)] ∀u, v, w ∈ Xb

hence db is a b-metric on Xb with b = t
2
. But for t > 2 triangular inequality cannot

fulfilled.

Definition 2.2.7. (Convergent sequence in b- metric space)

The sequence {tn}n∈N ∈ X in a b- metric space (X, db) is called Convergent iff

t ∈ X, ∀δ > 0, ∃ an n(δ) in N such that ∀n ≥ n(δ),

db(tn, t) < δ or lim
n−→∞

tn = t.

Definition 2.2.8. (Cauchy sequence in b- metric space)

Let (X, db) be a b- metric space, then the sequence {tn}n∈N in X is called Cauchy

sequence iff t ∈ X, ∀δ > 0 then there exist an n(δ) in N such that, for every

n,m ≥ n(δ) we have,

db(tn, tm) < δ

if every Cauchy sequence is convergent then the b-metric space (X, db) is said to

be complete.

Definition 2.2.9. (Closedness in b-metric space)

A set A ⊂ X is closed in a b-metric space (X, db), iff for every convergent sequence

in A, ∃ an element t ∈ A

Definition 2.2.10. (Compact Sets)

A set A ⊂ X is said to be Compact set in a b-metric space (X, db), iff there exist

a sub-sequence for each sequence of element of A, that converges to an element of

A.

Remark 2.2.11. Following statements hold in b-metric space (X, db).

1. There is a unique limit of convergent sequence in b-metric space.
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2. In b-metric space, convergent sequence must be Cauchy sequence.

3. A b-metric is not continuous in general as illustrated by following example,

Example 2.2.12. [27]

“Let X = N ∪ {∞} and let db : X ×X → {0,+∞} is defined by

db(m,n) =



0 if m = n,

| 1
m −

1
n | if one of m,n is even and the other is even or ∞,

5 if one of m,n is odd and the other is odd or ∞,

2 otherwise.

It can be checked that for all m,n, p ∈ X we have

db(m, p) ≤
5

2
[db(m,n) + db(n, p)]

Thus (X, db) is a b- metric space with b = 5
2
. Let xn = 2n for each n ∈ N,

then

db(2n,∞) =
1

2n
−→ 0 as n −→∞

that is, xn −→∞, but db(xn, 1) = 2 9 5 = db(∞, 1) as n −→∞.”

2.3 Fixed Points in Metric space

In the current section, we will describe the Fixed point in metric space and its

examples. Fixed point theorem is one of the most adoptable tools in Mathematical

Analysis, which is used to solve several problems in different fields of mathematics.

Several authors essentially, [12],[20],[25] interpret fixed point theory on complete

metric space. Recently, fixed point theory extends fast in partially ordered metric

space.

Definition 2.3.1. (Fixed point)

A fixed point of a function F 7→ X × X is an x0 ∈ X which mapped onto itself
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that is, t ∈ X is said to be a fixed point of function f : X 7→ X if and only if,

f(t) = t

Following are examples of fixed point.

Example 2.3.2. Let f ;R 7→ R be a function defined as,

f(t) = t2 − 3t+ 4

then f has fixed point t = 2 because f(2) = 2.

Example 2.3.3. Let X = R, a self map T from X into X in a metric space (X, d)

defined as,

Tz = 2z + 1; ∀z ∈ X

then z = −1 ∈ R is the only fixed point of Tz.

Example 2.3.4. Let I be the identity map on metric space X = R with usual

metric d, i.e,

I(z) = z, ∀z ∈ X

then every point of X will be the fixed point of I.

Example 2.3.5. There is no fixed point of T , if Tz = z + 1, because there is no

solution for z + 1 = z.

Example 2.3.6. Table showing list of functions with their fixed points taken out

from mathworld.wolfram.com/fixed point [51].
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Function Fixed Point Function Fixed Point

cosecant 1.1141571408 inverse hyperbolic cosecant 0.9320200293

cosine 0.7390851332 inverse hyperbolic cosine –

cotangent 0.8603335890 inverse hyperbolic cotangent 1.1996786402

hyperbolic cosecant 0.9320200293 inverse hyperbolic secant 0.7650099545

hyperbolic cosine – inverse hyperbolic sine 0

hyperbolic cotangent 1.1996786402 inverse hyperbolic tangent 0

hyperbolic secant 0.7650099545 inverse secant –

hyperbolic sine 0 inverse sine 0

hyperbolic tangent 0 inverse tangent 0

inverse cosecant 1.1141571408 secant 4.9171859252

inverse cosine 0.7390851332 sine 0

inverse cotangent 0.8603335890 tangent 4.4934094579

Geometrically, the fixed point of a single valued function y = f(x) lies where the

graph of the function f intersects with the real line y = x.

Thus a function may or may not have a fixed point. Furthermore, the fixed point

may not be unique. Figure given bellow shows graph of R function having three

fixed points.

Figure 2.1: Three Fixed points

Example 2.3.7. Let X = R and T maps from X into X such that,

Tx = x+ 1
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then, T has no fixed point,

since x+ 1 = x has no solution.

Figure 2.2: No Fixed point

Example 2.3.8. Let X = R and T maps from X into X such that,

Tx = 2x+ 1

then, T has a unique fixed point x = −1.

Figure 2.3: Unique Fixed point
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Definition 2.3.9. (Zeroes of a Function)

Finding zeroes of a real valued function g(x) defined on an interval is as finding

the fixed point of f(x) where,

f(x) = x− g(x)

since, zeroes of g(x) means x such that,

g(x) = 0

⇒ x− g(x) = x

OR

f(x) = x, i.e “x is a fixed point of f(x)”

Example 2.3.10. Consider the quadratic polynomial,

g(x) = x2 + 5x+ 4

therefore, zeroes of g(x) are

x = −4, x = −1

Resulting, g(x) = 0 as,

x2 + 5x+ 4 = 0

x2 + 4 = −5x

x =
x2 + 4

−5
= f(x)

Clearly; problem of finding zeroes of g(x) is equivalent to the problem of finding

the fixed point of f(x) such that x = f(x).
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Example 2.3.11. Indeed an operator equation Tx = y may be equivalently trans-

formed to fixed point problem, that is;

S(x) = x with S(x) = x+ Tx − y

Therefore, finding a vector x such that S(x) = x is same as finding or solving the

equation,

x+ Tx − y = x

⇒ Tx − y = 0

⇒ Tx = y

2.4 Types of Mappings

Definition 2.4.1. (Lipschitzian Mapping)

A self map M : X 7→ X on a metric space, then M is a Lipschitzian Map if ∃λ ≥ 1

such that,

d(M(η1),M(η2)) ≤ λd(η1, η2); ∀η1, η2 ∈ X

Here λ is called Lipschitzian constant.

Example 2.4.2. Let M : X 7→ X be a self map on X = R defined as M(t) =

5t ∀t ∈ X, then

d(M(t1),M(t2)) = d(5t1, 5t2)

=| 5t1 − 5t2 |

= 5 | t1 − t2 |

= 5d(t1, t2)

Here λ = 5 is the Lipschitzian constant.

Definition 2.4.3. (Contraction Mapping)

A self map M : X 7→ X on a metric space, is a Contraction Mapping if its
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Lipschitzian constant λ < 1 i.e 0 ≤ λ < 1 such that,

d(M(η1),M(η2)) ≤ λd(η1, η2); ∀η1, η2 ∈ X η1 6= η2

Example 2.4.4. A self map M(X) = t3 ∀t ∈ X on a metric space, X = (0, 1
2
)

with metric d defined as sup(0, 1
2
) ⇒| t |< 1

2
then for η1, η2 ∈ X, d(η1, η2) =|

η1 − η2 |,

d (M(η1),M(η2)) =|M(η1)−M(η2) |

=| η3
1 − η3

2 |

=| η2
1 + η1η2 + η2

2 || η1 − η2 |

≤ 1

2
d(η1, η2)

≤ λd(η1, η2)

Since λ ∈ (0, 1
2
) therefore M is a contraction.

Definition 2.4.5. (Contrative Mapping)

A self map M : X 7→ X on a metric space is a Contrative Mapping if,

d(M(η1),M(η2)) < d(η1, η2); ∀η1, η2 ∈ X η1 6= η2

Every contraction is contractive mapping but in general the converse of this state-

ment is not true , for instance see the example given bellow.

Example 2.4.6. Let M(X) = t + 1
t
∀t ∈ X be a self map on X = [0,∞) with

metric d such that,

d(M(t1),M(t2)) = d

(
t1 +

1

t1
, t2 +

1

t2

)
=| t1 +

1

t1
− t2 −

1

t2
|

=| t1 − t2 + (
1

t1
− 1

t2
) |

=| (t1 − t2) + (
t2 − t1
t1t2

) |
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=| (t1 − t2)− (
t1 − t2
t1t2

) |

=| t1 − t2 || 1−
1

t1t2
|

<| t1 − t2 |

= d(t1, t2).

this shows that M is contractive but its not a contraction.

Definition 2.4.7. Non-expensive Mapping

A self map M : X 7→ X on a metric space is a Non-expensive Mapping if,

d(M(η1),M(η2)) ≤ d(η1, η2); ∀η1, η2 ∈ X η1 6= η2

Note: “Every contractive mapping is a non-expensive mapping but every non-

expensive mapping need not be contractive mapping and hence is not a contrac-

tion”. For example identity map is non-expensive but not a contraction.

2.5 Banach Contraction Principle

The most important and basic result of fixed point theory is Banach fixed point

theorem [8] or contraction principle. A polished Mathematician Stefan Banach

first present Banach Contraction Principle in his PHD research during 1922.

Theorem 2.5.1.

Let M be a self map on a metric space (X, d), suppose 0 ≤ α < 1 such that,

d(M(η1),M(η2)) ≤ αd(η1, η2); ∀η1, η2 ∈ X η1 6= η2

then there is a unique fixed point of M .
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Example 2.5.2. A M : (R, d) 7→ (R, d);X = R is such that t −→ 1 + u
4

then,

d(M(u),M(v)) = d(1 +
u

4
, 1 +

v

4
); ∀u, v ∈ R

=
1

4
| u− v |

≤ λd(u, v)

since it satisfied all condition of the statement of Theorem 2.5.1 with unique fixed

point u = 4
3
.

Example 2.5.3. Suppose X = (0, 1] ⊂ R and define a self map M on X such

that t −→ 1
4
u,∀ t ∈ X then,

d(M(u),M(v)) = d(
1

4
u,

1

4
v); ∀u, v ∈ R

=
1

4
| u− v |

≤ λd(u, v).

Here λ = 1
4

but M is not complete and has no fixed point which is contradiction

of 2.5.1, this shows that for sure existance of 2.5.1 completeness is necessary.

2.6 Fuzzy Mappings

This section deals with the definition and examples related to fuzzy mappings.

Definition 2.6.1. (Fuzzy Sets)

Let X be a nonempty set, a fuzzy set F in X is defined as its membership function

µF (u) consists of degree or grade of membership of element u in fuzzy set F for

all u ∈ X. It is clear that fuzzy set F is represented in the form of ordered pairs

e.g,

F = {(u, µF (u))/u ∈ X}

Membership function for a fuzzy set F on X is defined as,

µF : X 7→ [0, 1]
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that is each element of X is mapped to values between 0 and 1, these values are

called degree or grade of membership. Fuzzy sets are graphically represented with

the help of membership function.

Figure 2.4: Fuzzy membership functions

Fuzzy Set Operations

• OR

µA∪B(t) = max[µA(t), µB(t)] µA∪B(t) = µA(t) + µB

• AND

µA∩B(t) = min[µA(t), µB(t)] µA∪B(t) = µA(t)µB

• NOT

µA = 1− µA(t)

Definition 2.6.2. (Fuzzy Number)

A fuzzy number is a number whose membership function is partially continuous
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and has value,

µF (x) = 1

Following graphs show the fuzzy number x, fuzzy number near x(neighborhood of

x) and fuzzy number almost x respectively.

Figure 2.5: Fuzzy Number x

Figure 2.6: Fuzzy Number near x

Figure 2.7: Fuzzy Number almost x

Definition 2.6.3. (Fuzzy Mappings)

Let X be any set and Y be any metric linear space. M is called a fuzzy mapping

iff M is a mapping from X intoW(Y ) that is M(x) ∈ W(Y ) for each x ∈ X. Here

W(Y ) is a collection of family of fuzzy sets.

In a mathematical model which is difficult to derive, fuzzy system is suitable for

uncertainty or approximation. Under incomplete information fuzzy logic helps to

make decision.
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Example 2.6.4. Fuzzy Cognitive Maps are one of the most familiar example

of Fuzzy mappings. These maps are introduced by a political scientist Kosko [26]

in 1970s to represent social scientific knowledge. Generally Cognitive maps are

the casual relationships of the concepts which are designed in the graphs. The

graphical representation of these facts of a given framework is considered as a

fuzzy cognitive map(FCM). Simply the collaboration of cognitive mapping and

fuzzy logic is known as fuzzy cognitive mapping. The basic tool for cognitive is

‘Theory of graphs’. Most of the calculations are based on graph theory. The

important component of a mapped structure collectively make the fuzzy cognitive

map(FCM). To calculate end results and in order to run simulations FCM is is used

as an important tool. In political science, military science, history,international

relations, where meta-system language and system concepts both are fundamen-

tally fuzzy, FCM can be easily applicable. Distributed intelligence can also be

represented by fuzzy cognitive maps, the figure [39] given bellow represents casual

relationship of soft knowledge.

Figure 2.8: Fuzzy Cognitive Map

Some other examples of Fuzzy Cognitive Maps are as follows,

Example 2.6.5. Following figure with its matrix form make easy to understand

the simplest form of fuzzy cognitive map:-
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Figure 2.9: FCM given in ozesmi’s paper [35] presented in 2004

Tab. 1: Representing the Fuzzy Cognitive Map along its matrix form given in

above figure.
Groups zesmi zesmi 2004 Wetlands F ish LakeP ln. Inc. LawEnft.

Wetlands 0.0 1.0 -0.1 0.8 0.0

Fish 0.0 0.0 0.0 0.0 0.0

LakeP ln. -0.2 0.0 0.0 -0.2 0.0

Inc. 0.0 0.0 0.0 0.0 0.0

LawEnft. 0.2 0.5 -0.5 -0.2 0.0

Outdegree 1.90 0.00 0.40 0.00 1.40

Indegree 0.40 1.50 0.60 1.20 0.00

Pitch 2.30 1.50 1.00 1.20 1.40

Type Ord. Rcvr. Ord. Rcvr. Transmitter

Dnsty. TotalFact. TotalConnections Nr.Transmitter Nr.Rcvr. Nr.Ord.

0.36 5 9 1 2 2

The above figure and table is taken from milti-step cognitive maps by Ozesmi

[35], the transmitted variable is law enforcement. In this map, the outdegree of

laws enforcement is 1.5 while ist indegree is 0. All other variables are affected by

law enforcement but the other variables have no influence on it. The reciever vari-

able in this map is income which is variable 3, the outdegree of income is 0 while

its input is 1.20. Therefore, in this map there is an influence of other variables on

income. The fish population is followed by wetland and income so it is the central
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variable in this map.

Example 2.6.6. Fuzzy cognitive mapping for bad weather driving is given

bellow. This figure is taken out from Bart Kosko’s book [54] named as “Fuzzy

Thinking”.

Figure 2.10: FCM for Bad weather driving

Above figure shows the effect of bad weather on driving on a Clifornia freeway

in daytime. The symbols + and − indicates the types of relationship between

the factors and the casual relationship is defined with the words “usually” and “a

little”. The table bellow shows the values of bad weather from 20-80. We can see

that after 10,12 and 13 steps there is a convergence for the bad weather levels in

the simulations of 20, 30 and 40.
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Factor B.Weather=20 B.Weather=30 B.Weather=40

B.Weather 20 30 40

Freeway Cong. 21 31 41

Accidents 11 16 28

Own R. Aver. 85 86 88

Patrol Freq. 100 100 100

Own Driv.Sp. 100 100 100

Similarly, we can see that table for simulations of 60, 70 and 80. The conver-

gence will take place after 12, 12 and 10 steps.

Factor B.Weather=60 B.Weather=70 B.Weather=80

B.Weather 60 70 80

Freeway Cong. 60 70 80

Accidents 72 84 89

Own R.Aver. 12 14 15

Patrol Freq. 0 0 0

Own Driv.Sp. 0 0 0
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Fuzzy Mappings in metric Space

In 1965 Zadeh [55] introduced the concept of fuzzy sets. Later on, in 1981 the

concept of fuzzy mappings was inaugurated by Heilpern [22]. He also proved

fixed point theorem which is an extension of the Banach contraction principle.

Abu-Donia [1] also proved fixed point results for fuzzy mappings. These theorems

are helpful in geometrical problems related to physics, but needs some extension.

Although, the proofs of the main consequence of Abu-Donia’s theorems are not

correct. In 2008 T. Kamran [23] presented the correct results of these proofs in

his paper. In this Chapter we review the results presented in [23].

3.1 Notations

Through out this Chapter:

(X, d) is a metric space, D the distance between the sets. Let P and Q be the

non-empty subsets of X then,

D(P,Q) = inf{d(p, q) : p ∈ P, q ∈ Q}

C(X) denotes the set of all nonempty compact subsets of X, CB(X) represents the

set of all nonempty bounded closed subsets of X. Here H denotes the Hausdorff

27
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metric with respect to d, that is,

H(P,Q) = max{sup
x∈P

D({x}, Q), sup
y∈Q

D({y}, P )}

Let T maps form X into CB(X) be a setvalued mapping defined as, for every

x ∈ X,Tx ⊂ X. A point p ∈ X is called a fixed point of a multivalued map T iff

p ∈ Tp.

Here by Tp we mean T (p). Moreover, we wrote D({x}, P ) as D(x, P ) and T (x)

as Tx.

Let us suppose that: K(X) = {η ∈ IX : η̂ ∈ CB(X)}, where η̂ = {x ∈ X : η(x) =

maxt∈X η(t)} and π : K(X) 7→ CB(X) and π(η) = η̂.

Definition 3.1.1. A set valued mapping M on X into K(X) is called a fuzzy

mapping on X, M̂ denotes the composition of η and M , that is

η ◦M = M̂ = {y ∈ X : Mxy = max
z∈X

Mxz} (3.1)

Let M : X 7→ K(X) be a fuzzy mapping and v ∈ X is a fixed point of M if

Mvv ≥Mvx ∀x ∈ X.

Lemma 3.1.2. A point v ∈ X is a fixed point for a fuzzy mapping M : X 7→

K(X), iff v is a fixed point for the induced mapping K̂ mapped from X into

CB(X).

Proof. v ∈ X is fixed point of M : X 7→ K(X),

⇔Mv(v) ≥Mv(t),∀t ∈ X

⇔Mv(v) = max
t∈X

Mv(t)

⇔ v is fixed point of M̂ maps from X into CB(X).

⇔ v is fixed point of M̂ maps from X into CB(X).
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Lemma 3.1.3. let A be a nonempty subset of X in a metric space (X, d), then

D(u,A) ≤ d(u, t) +D(t, A) for any u, t ∈ X

Proof. Suppose that t ∈ X then,

D(u,A) = inf{d(u, v) : v ∈ A}

≤ inf{d(u, t) + d(t, v) : v ∈ A}

= d(u, t) + inf{d(t, v) : v ∈ A

= d(u, t) +D(t, A).

Lemma 3.1.4. Suppose that a non-decreasing function Ψ : R+ 7→ R+ which

satisfies that Ψ is continuous from right and

∞∑
m=0

Ψm(z) <∞ ∀ z > 0

Where Ψm denotes the mth iterative function of Ψ. Then Ψ(z) < z.

3.2 Fixed Point Results in Metric Space

The followings are the main results presented by Abu-Donia[1].

Theorem 3.2.1.

Let (X, d) be a complete metric space and let M,N be two fuzzy mappings defined

as M,N : X → K(X) the mappings induced by M,N are M̂, N̂ : X 7→ CB(X).

Let Ψ satisfying lemma 3.1.4.

H(M̂a, N̂b) ≤ Ψ

(
max

(
d(a, b), D(x, M̂a), D(y, N̂b),

D(a, N̂b) +D(b, M̂a)

2

))
(3.2)

Where a, b ∈ X, then there exist a common fixed point of M and N .
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Theorem 3.2.2.

Let (X, d) be a complete metric space. Let Mn : x 7→ K(X) be a sequence of fuzzy

mappings and by 3.1, M̂n, a fuzzy mapping induced by Mn. Let Ψ satisfying the

lemma 3.1.4 , suppose that a, b ∈ X and i, j be the positive integers such that

H(M̂ia, M̂jb) ≤ Ψ

(
max

(
d(a, b), D(a, M̂ia), D(b, M̂jb),

D(a, M̂jb) +D(b, M̂ia)

2

))
(3.3)

then there exist a common fixed point of Mn.

From proofs of above theorems it follows that if M̂, N̂ ,Mn are the mappings from

X 7→ CB(X) then for every P ∈ CB(X),∃ an p ∈ P −→ d(x, p) = D(x, P ),∀x ∈

X. but it is true in case of P , a compact subset of X.

Example 3.2.3. [23]

“[4 page 480] Let `2 denote the Hilbert space of all square summable sequences of

real numbers; let a = (−1,−1
2
, · · · ,− 1

n
, · · · and; for each n = 1, 2, · · · , let en be

the vector in `2 with zeros in all its coordinates expect the nth coordinates which

is equal to 1. Let B = {e1, e2, · · · en, · · · }. Since ‖ a− en ‖=
(
‖ a ‖2 +1 = 2

n

) 1
2 for

each n = 1, 2, · · · , and there is no en in B such that ‖ a− en ‖≤ D(a,B).”

T. Kamran [23] said that if M̂, N̂ ,Mn are the mappings from X 7→ C(X) or the

mappings from X into PC(X), (where the set of nonempty closed and proximinal

subsets is represented by PC(X)) then Abu-Donia’s theorem will work. The

Proximinal subsets were first introduced by [37].

Definition 3.2.4. Let V be the subset of X and if for each x ∈ X there exist an

element v ∈ V such that,

d(x, v) = d(x, V )

then the subset V of X is called proxeminal.

T. Kamran replaced the inequalities by strict inequalities with the Lemma [25]

given bellow.
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Lemma 3.2.5. For each p ∈ P there is a q ∈ Q such that,

d(p, q) < δ, where P,Q ∈ CB(X) with H(P,Q) < δ

The new correction of the above theorems [23] is then given as follows;

Theorem 3.2.6.

Let (X, d) is a complete metric space and suppose that M and N mapped from

X into K(X) be two fuzzy mappings. According to the equation 3.1, induced

mappings of M and N are M̂, N̂ : X 7→ CB(X). Let Ψ satisfying Lemma 3.1.4.

H(M̂s, N̂t) < Ψ

(
max

(
d(s, t), D(s, M̂s), D(t, N̂t),

D(s, N̂t) +D(t, M̂s

2

))
(3.4)

Where s, t ∈ X, Then there exist a fixed point of M and N .

Proof. Let s0 be a point in X, Since M̂1s0 is nonempty therefore there is a point

s1 ∈ M̂1s0.

Let

δ = Ψ

(
max

(
d(s0, s1), D(s0, M̂1s0), D(s1, M̂2s1),

D(s0, M̂2s1) +D(s1, M̂1s0

2

))

then by above condition 3.4 we have

H(M̂1s0) < δ

by lemma 3.1.4, we have s2 ∈ X such that s2 ∈ M̂2s1 and

d(s1, s2) < δ

= Ψ

(
max

(
d(s0, s1), D(s0, M̂1s0), D(s1, M̂2s1),

D(s0, M̂2s1) +D(s1, M̂1s0)

2

))

≤ Ψ

(
max

(
d(s0, s1), d(s0, s1), d(s1, s2),

d(s0, s2) + d(s1, s1)

2

))
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= Ψ

(
max

(
d(s0, s1), d(s1, s2),

d(s0, s2)

2

))
≤ Ψ

(
max

(
d(s0, s1), d(s1, s2),

d(s0, s1 + d(s1, s2)

2

))

≤ Ψ(max(d(s0, s1), d(s1, s2)) (3.5)

Suppose that,

max(d(s0, s1), d(s1, s2) = d(s1, s2)

then by using Ψ(z) < z for z > 0, we have

d(s1, s2) < Ψ(d(s1, s2))

Which is a contradiction, this implies that,

max(d(s0, s1), d(s1, s2)) = d(s0, s1)

by eq.3.5 we have,

d(s1, s2) < Ψ(d(s0, s1)) (3.6)

in the same manner, we make sequence {sn} ∀n ≥ 1 such that,

s2n−1 ∈ M̂s2n− 1, s2n ∈ N̂s2n− 1, (3.7)

and

d(s2n, s2n+1) < Ψ (d(s2n−1, s2n)) , (3.8)

d(s2n−1, s2n) < Ψ (d(s2n−2, s2n−1)) , (3.9)

∴ d(sn+1, sn) < Ψ (d(sn−1, sn)) ≤ Ψn(d(s0, s1)) ∀n ≥ 1. (3.10)

Thus, for m,n(n > m) positive integers, we have

d(sm, sn) ≤ d(sm, sm+1) + · · ·+ d(sn−1, sn)



Chapter 3 33

< Ψmd(s0, s1) + · · ·+ Ψn−1d(s0, s1)

=
n−1∑

r=m
Ψrd(s0, s1)

≤
∞∑

r=m
Ψrd(s0, s1)

According to the following condition;

∞∑
n=1

Ψnd(z) <∞ for each z > 0,

{sn} is a Cauchy sequence.
let sn → p ∈ X. By lemma 3.1.3

D(p, N̂p) ≤ d(p, s2n−1) + D(s2n−1, N̂p) ≤ d(p, s2n−1) + H(M̂s2n−2 , N̂p)

< d(p, s2n−1) + Ψ

(
max

(
d(s2n−2, p), D(s2n−2, M̂s2n−2 ), D(p, N̂p),

D(s2n−2, N̂p) + D(p, M̂s2n−2 )

2

))

< d(p, s2n−1) + Ψ

(
max

(
d(s2n−2, p), d(s2n−2, s2n−1), D(p, N̂p),

D(s2n−2, N̂p) + d(p, s2n−1)

2

))

By using continuity of Ψ we have,

D(p, N̂p) ≤ Ψ
(
D(p, N̂p)

)
< D(p, N̂p)

this contradicts and arise from p ∈ N̂p which is closeness of N̂ ,

in the same way p ∈ M̂p.

So by lemma 3.1.2, M and N has a common fixed point that is p.

Theorem 3.2.7.

Let (X, d) be a complete metric space. Let {Mn} from X into K(X) be a sequence

of fuzzy mappings and by eq.3.1, M̂n, a fuzzy mapping induced by Mn. Let Ψ

satisfying the lemma 3.1.4, suppose that s, t ∈ X and i, j be the positive integers

such that,

H(M̂is, M̂jt) < Ψ

(
max

(
d(s, t), D(s, M̂is), D(t, M̂jt),

D(s, M̂jt) +D(t, M̂is)

2

))
(3.11)
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then there exist a common fixed point of {Mn}.

Proof. Let s0 ∈ X be a point, there is a point s1 ∈ M̂1s0 because M̂1s0 in

nonempty. Let

δ = Ψ

(
max

(
d(s0, s1), D(s0, M̂1s0), D(s1, M̂2s1),

D(s0, M̂2s1) +D(s1, M̂1s0

2

))

by inequality 3.11 we have,

H(M̂1s0, M̂2s1) < δ

by lemma 3.1.4, s2 ∈ X such that s2 ∈ M̂2s1

and

d(s1, s2) < δ = Ψ

(
max

(
d(s0, s1), D(s0, M̂1s0), D(s1, M̂2s1),

D(s0, M̂2s1) +D(s1, M̂1s0)

2

))

≤ Ψ

(
max

(
d(s0, s1), d(s0, s1), d(s1, s2),

d(s0, s2) + d(s1, s1)

2

))
= Ψ

(
max

(
d(s0, s1), d(s1, s2),

d(s0, s2)

2

))
≤ Ψ

(
max

(
d(s0, s1), d(s1, s2),

d(s0, s1) + d(s1, s1)

2

))

≤ Ψ(max(d(s0, s1), d(s1, s2))) (3.12)

Let us suppose that,

max(d(s0, s1), d(s1, s2)) = d(s1, s2)

Therefore, by Ψ(z) < z ∀z > 0 we have,

d(s1, s2) < Ψ(d(s1, s2)) < d(s1, s2)

This contradicts thus,

max(d(s0, s1), d(s1, s2)) = d(s0, s1)
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Using inequality 3.12, we have

d(s1, s2) < Ψ(d(s0, s1)) (3.13)

In the same manner, we make a sequence {sn} ∀n ≥ 1, such that

sn ∈ M̂nsn−1 (3.14)

d(sn+1, sn) < Ψ(d(sn−1, sn)) < Ψn(d(s0, s1)) for all n ≥ 1 (3.15)

So {sn} is a Cauchy sequence in X same as in last theorem.
Suppose that sn −→ p ∈ X, for m ∈ N by 3.11,

D(p, M̂np) ≤ d(p, sm) + D(sm, M̂np)

≤ d(p, sm) + H(M̂msm−1, M̂np)

< d(p, sm) + Ψ

(
max

(
d(sm−1, p), D(sm−1, M̂msm−1), D(p, M̂np),

D(sm−1, M̂np) + D(p, M̂msm−1)

2

))

≤ d(p, sm−1) + Ψ

(
max

(
d(sm−1, p), d(sm−1, sm), D(p, M̂np),

D(pm−1, M̂np) + d(p, sm)

2

))

Let n −→∞ and by the continuity condition of Ψ, we have,

D(p, M̂np) ≤ Ψ(D(p, M̂np)) < D(p, M̂np),

This contradicts and it arises from p ∈ M̂n ∀n = 1, 2, 3, · · · which is closeness

of M̂n. Therefore, by lemma 3.1.2 there is a common fixed point of Mn ∀n =

1, 2, 3, · · · .

Definition 3.2.8. [1]

“Let P and Q be two self mappings of a metric space (X, d) then these mappings

are compatible if

lim
n→∞

d(PQtn , QPtn) = 0

here {tn} ∈ X be a sequence and

lim
n→∞

Ptn = lim
n→∞

Ptn = u for some u ⊂ X
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Theorem 3.2.9.

Let M and N mapped from X into K(X) be two fuzzy mappings of a complete

metric space (X, d). Let the induced mappings of M and N are M̂, N̂ : X 7→

CB(X) then according to equation 3.1,

(i) There exists a sequence {sn} ∈ X implies that,

lim
n→∞

Msn = lim
n→∞

Nsn = u for some u ⊂ X,

(ii) H(M̂s, M̂t) < max{H(N̂s, N̂t),
1
2
[H(M̂s, N̂s) +H(M̂t, N̂t)],

1
2
[H(M̂t, N̂s) +H(M̂s, N̂t)]} ∀s, t ∈ X, s 6= t

(iii) M̂X ⊂ N̂X

If one of M̂X and N̂X is a complete subspace of X this implies that there is a

unique fixed point of M and N .

Proof. As (i) is satisfied by M̂X and N̂X, then there exists a sequence {sn} ∈ X

implies that,

lim
n→∞

Msn = lim
n→∞

Nsn = u for some u ⊂ X,

Let us suppose that N̂X is complete, this implies that for r ∈ X, limn−→∞ N̂sn =

N̂r and limn−→∞ M̂sn = N̂r.

Now let M̂r 6= N̂r then (ii)⇒

H(M̂sn , M̂r) < max

{
H(N̂sn , N̂r),

1

2
[H(M̂sn , N̂sn) +H(M̂r, N̂r)],

1

2
[H(M̂r, N̂sn) +H(M̂sn , N̂r)]

}
As n −→∞⇒,

H(N̂r, M̂r) ≤ max

{
H(N̂r, N̂r),

1

2
[H(N̂r, N̂r) +H(M̂r, N̂r)],

1

2
[H(M̂r, N̂r) +H(N̂r, N̂r)]

}
≤ H(M̂r, N̂r)

2

This contradicts our supposition that M̂r 6= N̂r therefore M̂r = N̂r,
since M̂ and N̂ are weakly compatible therefore M̂M̂r = M̂N̂r this implies that
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M̂M̂r = N̂M̂r = M̂N̂r = N̂N̂r

Finally, to prove M̂ and N̂ has a common fixed point r we suppose that M̂r 6= M̂M̂r

then,

H(M̂r, M̂M̂r) ≤ max
{
H(N̂r, N̂M̂r), 12 [H(M̂r, N̂r) +H(M̂M̂r, N̂M̂r)], 12 [H(M̂M̂r, N̂r) +H(M̂r, N̂M̂r)]

}
≤ max

{
H(M̂r, M̂M̂r), H(M̂M̂r, M̂r)

}
= H(M̂r, M̂M̂r),

this contradicts, hence M̂r = M̂M̂r and N̂M̂r = M̂M̂r = M̂r, Similarly for M̂X

a complete subspace of X as M̂X ⊂ N̂X.

Since r is a common fixed point of M̂ and N̂ therefore, according to the lemma

3.1.2 r is fixed point of M and N .

‘Uniqueness of fixed point follows easily’.
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Fuzzy mappings in b-Metric

Spaces

In the previous chapter, first we studied Abu Donia’s [1] fixed point theorems in

metric spaces then we focused on paper presented by Kamran [23] for the corrected

theorems in [1].

The main purpose of this chapter is to extend fixed point theorem for fuzzy map-

pings in metric spaces to fixed point theorems for fuzzy mappings in b- metric

spaces.

4.1 Notations

Through out this Chapter:

(X, db) is a b- metric space. The distance Db(P,Q) between the subsets then, P,Q

of X is then given by

Db(P,Q) = inf{db(p, q) : p ∈ P, q ∈ Q}.

C(X) denotes the set of all nonempty compact subsets of X and CB(X) represents

the set of all nonempty bounded closed subsets of X. The Hausdorff metric with

38
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respect to db is denoted by Hb is given as

Hb(U, V ) = max(sup
x∈U

Db({x}, V ), sup
y∈V

Db({y}, U))

Let T maps from X into CB(X) be a setvalued mapping defined as, for every

x ∈ X,Tx ⊂ X. A point p ∈ X is called a fixed point of a multivalued map T iff

p ∈ Tp. Here by Tp we mean T (p).

Moreover, we write Db({x}, U) as Db(x, U) and T (x) as Tx.

Let us suppose that: Kb(X) = {η ∈ IX : η̂ ∈ CB(X)}, where η̂ = {x ∈ X : η(x) =

maxt∈X η(t)} and πb : Kb(X) 7→ CB(X) and πb(η) = η̂. The notion distance of a

point x from a set U can be extended naturally for b-metric space as follows;

Definition 4.1.1. Let (X, db) be a b-metric space and a set U is such that, ψ 6=

U ⊂ X then

db(x, U) = inf{db(x, u) : u ∈ U}.

Lemma 4.1.2. Let A be a nonempty subset of X and (X, db) be a b- metric space.

Then,

Db(u,A) ≤ b (db(u, t) +Db(t, A)) ∀u, t ∈ X and b ≥ 1.

Proof. Suppose that t ∈ X then,

Db(u,A) = inf{db(u, v) : v ∈ A}

≤ inf{b(db(u, t) + db(t, v)) : b ≥ 1, v ∈ A

= b(db(u, t) + inf{db(t, v) : v ∈ A})

= b(db(u, t) +Db(t, A)).

Lemma 4.1.3. For each u ∈ U there is a v ∈ V such that,

db(u, v) < δ, where U, V ∈ CB(X) with Hb(U, V ) < δ
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4.2 Fixed Point Results in b-metric Space

Now the extended form of fixed point theorems in b-metric space is as follows:

Theorem 4.2.1.

Let (X, db) be a complete b-metric space with a continuous b−metric db and b ≥ 1.

Let M,N be two fuzzy mappings defined as M,N : X → Kb(X) the set-valued

mappings induced by M,N are M̂, N̂ : X → CB(X). Let Ψ be a function that

satisfies Lemma 3.1.4. Moreover for any s, t(s 6= t) in X

Hb(M̂s, N̂t) < Ψ

(
max

(
db(s, t), Db(s, M̂s), Db(t, N̂t),

Db(s, N̂t) +Db(t, M̂s)

2

))
(4.1)

there exist a common fixed point of M and N .

Proof. Let s0 be a point in X, Since M̂s0 is nonempty therefore there is a point

s1 ∈ N̂s0 . Let

δb = Ψ

(
max

(
db(s0, s1), Db(s0, M̂s0), Db(s1, N̂s1),

Db(s0, N̂s1) +Db(s1, M̂s0)

2

))
(4.2)

then by above Condition (4.2) we have,

Hb(M̂s0 , N̂s1) < δb

by Lemma 4.1.3 ∃s2 ∈ X such that, s2 ∈ N̂s1 and

db(s1, s2) < Hb(M̂s0 , N̂s1)

db(s1, s2) < δb = Ψ

(
max

(
db(s0, s1), Db(s0, M̂s0), Db(s1, M̂s1),

Db(s0, M̂s1) +Db(s1, M̂s0)

2

))

≤ Ψ

(
max

(
d(s0, s1), db(s0, s1), db(s1, s2),

Db(x0, s2) +Db(s1, s1)

2

))
= Ψ

(
max

(
db(s0, s1), d(s1, s2),

db(s0, s2)

2

))
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≤ Ψ

(
max

(
db(s0, s1), db(s1, s2), b

db(s0, s1) + db(s1, s2)

2

))
(4.3)

Case-i For b = 1

It is a case of metric space directly follows from [23].

Case-ii For b > 1

Suppose that,

max

(
db(s0, s1), db(s1, s2), b

db(s0, s1) + db(s1, s2)

2

)
= db(s1, s2)

by using the condition ψ(z) < z, ∀z > 0, so we have,

db(s1, s2) < ψ (db(s1, s2)) < db(s1, s2)

which is contradiction of our supposition.

Therefore (4.3) implies that,

db(s1, s2) ≤ Ψ

(
max

(
db(s0, s1), b

db(s0, s1) + db(s1, s2)

2

))
(4.4)

Now if

max

(
db(s0, s1), b.

db(s0, s1) + db(s1, s2)

2

)
= db(s0, s1)

by using the condition ψ(z) < z, ∀z > 0, (4.4) implies that

db(s1, s2) ≤ ψdb(s0, s1) < db(s0, s1) (4.5)

if max

(
db(s0, s1), b

db(s0, s1) + db(s1, s2)

2

)
= b

db(s0, s1) + db(s1, s2)

2

by using the condition ψ(z) < z, ∀z > 0, 4.4 implies that

db(s1, s2) ≤ ψ

(
b
db(s0, s1) + db(s1, s2)

2

)
< b

db(s0, s1) + db(s1, s2)

2
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⇒ db(s1, s2) <
b

2
(db(s0, s1) + db(s1, s2))

⇒ (1− b

2
)db(s1, s2) <

b

2
db(s0, s1)

⇒ (
2− b

2
)db(s1, s2) <

b

2
db(s0, s1)

⇒ (2− b)db(s1, s2) < bdb(s0, s1)

Also

db(s1, s2) <
b

2− b
db(s0, s1) (4.6)

From both (4.5) and (4.6), we can conclude that

db(s1, s2) < bdb(s0, s1) (4.7)

∴ db(s1, s2) < ψ(bdb(s0, s1))

in the same manner, we make sequence {sn},∀n ≥ 1 such that,

s2n−1 ∈ M̂s2n−2, s2n ∈ N̂s2n−1, (4.8)

and db(s2n, s2n+1) < Ψ (bdb(s2n−1, s2n)) , (4.9)

db(s2n−1, s2n) < Ψ (bdb(s2n−2, s2n−1)) , (4.10)

∴ db(sn+1, sn) < Ψ (bdb(sn−1, sn)) ≤ Ψn(bdb(s0, s1)) ∀n ≥ 1. (4.11)

Thus, for m,n(n > m) positive integers, we have

db(sm, sn) ≤ db(sm, sm+1) + · · ·+ db(sn−1, an)

< Ψm(bdb(s0, s1)) + · · ·+ Ψn−1(bdb(s0, s1))

=
n−1∑
r=m

Ψr(bdb(s0, s1))

≤
∞∑

r=m

Ψr(bdb(s0, s1))
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According to the following condition;

∞∑
n=1

Ψnd(z) <∞ for each z > 0,

{sn} is a Cauchy sequence.
let sn → p ∈ X. By Lemma 4.1.2

Db(p, N̂p) ≤ b
(
db(p, s2n−1), Db(s2n−1, N̂p)

)
≤ b

(
db(p, s2n−1) + Hb(M̂s2n−2, N̂p)

)
< b

(
db(p, s2n−1) + Ψ

(
max

(
db(s2n−2, p), Db(s2n−2, M̂s2n−2), Db(p, N̂p),

Db(s2n−2, N̂p) + Db(p, M̂s2n−2)

2

)))

< b

(
db(p, s2n−1) + Ψ

(
max

(
db(s2n−2, p), db(s2n−1, s2n−1), Db(p, N̂p),

Db(s2n−2, N̂p) + db(p, s2n−1)

2

)))

< b

(
db(p, s2n−1) + Ψ

(
max

(
db(s2n−2, p), db(s2n−2, s2n−1), Db(p, N̂p),

b(db(sn, p) + Db(p, N̂p)) + db(p, s2n−1)

2

)))

∴ by continuity of ψ there are following four possibilities,

Db(p, N̂p) ≤ b (db(p, s2n−1) + db(s2n−2, p)) , (4.12)

Db(p, N̂p) ≤ b (db(p, s2n−1) + db(s2n−2, s2n−1)) , (4.13)

Db(p, N̂p) ≤ b
(
db(p, s2n−1) +Db(p, N̂p)

)
⇒ (1− b)Db(p, N̂p) ≤ b.db(p, s2n−1)

⇒ Db(p, N̂p) ≤
b

1− b
db(p, s2n−1) (4.14)

and Db(p, N̂p) ≤ b

(
db(p, s2n−1) +

b

2
(db(sn, p) +Db(p, N̂p)) +

1

2
db(p, s2n−1)

)

(1− b2

2
)Db(p, N̂p) ≤ (b+

b

2
)db(p, s2n−1) + (

b2

2
)db(sn, p)

⇒Db(p, N̂p) ≤
b

2− b2
(3db(p, s2n−1) + b.db(sn, p)) (4.15)



Chapter 4 44

Since sn −→ p as n −→∞

∴ from above Inequalities (4.12),(4.13),(4.14) and (4.15),

Db(p, N̂p)) = 0,⇒ p ∈ N̂p

Hence by Lemma 3.1.2, M and N has a common fixed point that is p.

Remark 4.2.2. Theorem 3.2.6 becomes a special case of Theorem 4.2.1 by taking

b = 1.

Theorem 4.2.3.

Let (X, db) be a complete b-metric space with a continuous b−metric db and b ≥ 1.

Let {Mn} from X into Kb(X) be a sequence of fuzzy mappings and M̂n is a set-

valued fuzzy mapping induced by Mn. Let Ψ be a function that satisfies Lemma

3.1.4 and for s, t ∈ X and i, j be the positive integers, then according to the given

condition:

Hb(M̂is, M̂jy) < Ψb

(
max

(
db(s, t), Db(s, M̂is), Db(t, M̂jt),

Db(s, M̂jt) +Db(t, M̂is)

2

))
(4.16)

there exist a common fixed point of {Mn}.

Proof. Let s0 be a point in X, Since M̂1s0 is nonempty therefore there is a point

s1 ∈ M̂1s0.

Let

δb = Ψ

(
max

(
db(s0, s1), Db(s0, M̂1s0), Db(s1, M̂2s1),

Db(s0, M̂2s1) +Db(s1, M̂1s0

2

))
(4.17)

then by above Condition (4.16) we have

Hb(M̂1s0, M̂2s1) < δb (4.18)
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Then by Lemma 4.1.3, ∃ an s2 ∈ X such that s2 ∈ M̂2s1 and

db(s1, s2) < Hb(M̂1s0, M̂2s1)

db(s1, s2) < δb

db(s1, s2) = Ψ

(
max

(
db(s0, s1), Db(s0, M̂1s0), Db(s1, M̂2s1),

Db(s0, M̂2s1) + Db(s1, M̂1s0)

2

))

≤ Ψ

(
max

(
db(s0, s1), db(s0, s1), db(s1, s2),

db(s0, s2) + db(s1, s1)

2

))
= Ψ

(
max

(
db(s0, s1), db(s1, s2),

db(s0, s2

2

))

≤ Ψ

(
max

(
db(s0, s1), db(s1, s2), b

db(s0, s1 + db(s1, s2

2

))
for b ≥ 1 (4.19)

Case-i For b = 1

It is a case of metric space followed directly from [23].

Case-ii For b > 1

Suppose that,

max

(
db(s0, s1), db(s1, s2), b

db(s0, s1) + db(s1, s2)

2

)
= db(s1, s2)

by using the condition ψ(z) < z, ∀z > 0,

db(s1, s2) < ψ (db(s1, s2)) < db(s1, s2)

which is contradiction of our supposition.

Therefore (4.19) implies that,

db(s1, s2) ≤ Ψ

(
max

(
db(s0, s1), b

db(s0, s1 + db(s1, s2

2

))
(4.20)
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Now if

max

(
db(s0, s1), b

db(s0, s1) + db(s1, s2)

2

)
= db(s0, s1)

by using the condition ψ(z) < z, ∀z > 0,

db(s1, s2) ≤ ψdb(s0, s1) < db(s0, s1) (4.21)

if

max

(
db(s0, s1), b

db(s0, s1) + db(s1, s2)

2

)
= b

db(s0, s1) + db(s1, s2)

2

by using the condition ψ(z) < z, ∀z > 0, (4.20) implies that

db(s1, s2) ≤ ψ

(
b
db(s0, s1) + db(s1, s2)

2

)
< b

db(s0, s1) + db(s1, s2)

2

⇒ db(s1, s2) <
b

2
(db(s0, s1) + db(s1, s2))

⇒ (1− b

2
)db(s1, s2) <

b

2
db(s0, s1)

⇒ (
2− b

2
)db(s1, s2) <

b

2
db(s0, s1)

⇒ (2− b)db(s1, s2) < bdb(s0, s1)

⇒ db(s1, s2) <
b

2− b
db(s0, s1) (4.22)

Therefore from 4.21 and 4.22, we have

db(s1, s2) < bdb(s0, s1) (4.23)

in the same manner, we make sequence {an},∀n ≥ 1 such that,

sn ∈ M̂nsn−1 (4.24)

and

db(s2n, s2n+1) < Ψ (bdb(s2n−1, s2n)) , (4.25)
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db(s2n−1, s2n) < Ψ (bdb(s2n−2, s2n−1)) , (4.26)

∴ db(sn+1, sn) < Ψ (bdb(sn−1, sn)) ≤ Ψn(bdb(s0, s1)) ∀n ≥ 1. (4.27)

Thus, for m,n(n > m) positive integers, we have

db(sm, sn) ≤ db(sm, sm+1) + · · ·+ db(sn−1, an)

< Ψmdb(s0, s1) + · · ·+ Ψn−1(bdb(s0, s1))

=
n−1∑
r=m

Ψr(bdb(s0, s1))

≤
∞∑

r=m

Ψr(bdb(s0, s1))

According to the following condition;

∞∑
n=1

Ψnd(z) <∞ for each z > 0,

{sn} is a Cauchy sequence.
let sn → p ∈ X then by Lemma 4.1.2

Db(p, M̂np) ≤ b
(
db(p, sm) + Db(sm, M̂np)

)
≤ b

(
db(p, sm) + Hb(M̂msm−1, M̂np)

)
< b

(
db(p, sm) + Ψ

(
max

(
db(sm−1, p), Db(sm−1, M̂msm−1), Db(p, M̂np),

Db(sm−1, M̂np) + Db(p, M̂msm−1)

2

)))

< b

(
db(p, sm) + Ψ

(
max

(
db(sm−1, p), db(sm−1, sm), Db(p, M̂np),

Db(sm−1, M̂np) + db(p, sm)

2

)))

< b

(
db(p, sm) + Ψ

(
max

(
db(sm−1, p), db(sm−1, sm), Db(p, M̂np),

b(db(sm−1, p) + Db(p, M̂np)) + db(p, sm)

2

)))

∴ by continuity of ψ there are following four possibilities,

Db(p, M̂np) ≤ b (db(p, sm) + db(sm−1, p)) , (4.28)

Db(p, M̂np) ≤ b (db(p, sm) + db(sm−1, sm)) , (4.29)
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Db(p, M̂np) ≤ b
(
db(p, sm) +Db(p, M̂p)

)

⇒ (1− b)Db(p, M̂np) ≤ bdb(p, sm)

⇒ Db(p, M̂np) ≤
b

1− b
db(p, sm) (4.30)

and Db(p, M̂np) ≤ b

(
db(p, sm) +

b

2
(db(sm−1, p) +Db(p, M̂np)) +

1

2
db(p, sm)

)
(1− b2

2
)Db(p, M̂np) ≤ (b+

b

2
)db(p, sm) + (

b2

2
)db(sm−1, p)

⇒ Db(p, M̂np) ≤
b

2− b2
(3db(p, sm) + b.db(sm−1, p)) (4.31)

Since sm −→ p and limm−→∞ sm = p

∴ from (4.28),(4.29),(4.30) and (4.31) Db(p, M̂np)) = 0,⇒ p ∈ M̂np

Hence by Lemma 3.1.2, Mn has a common fixed point that is p.

Remark 4.2.4. Theorem 3.2.7 becomes a special case of Theorem 4.2.3 by taking

b = 1.

Theorem 4.2.5.

Let M and N mapped from X into Kb(X) be two fuzzy mappings of a complete

b-metric space (X, db) with a continuous b−metric db and b ≥ 1. Let the induced

mappings of M and N are M̂, N̂ : X 7→ CB(X), then according to Equation (3.1),

(i) ∃ a sequence {sn} ∈ X such that;

lim
n−→∞

Msn = lim
n−→∞

Nsn = u for some u ⊂ X

(ii) For b ≥ 1,

Hb(M̂s, M̂t) < max{Hb(N̂s, N̂q),
b
2
[Hb(M̂p, N̂p)+Hb(M̂q, N̂q)],

b
2
[Hb(M̂t, N̂s)+

Hb(M̂s, N̂t)]} ∀s, t ∈ X, s 6= t

(iii) M̂X ⊂ N̂X
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If one of M̂X and N̂X is a complete subspace of X this implies that there is a

unique fixed point of M and N .

Proof. Since M and N mapped from X into Kb(X) be two fuzzy mappings of a

complete b-metric space (X, db), For b = 1 it refers to the case of metric space

proved in previous Chapter in Theorem 3.2.9.

For b > 1

As (i) is satisfied by M̂X and N̂X, then ∃ a sequence {sn} ∈ X such that,

lim
n→∞

Msn = lim
n→∞

Nsn = u for some u ⊂ X,

Let us suppose that N̂X is complete, this implies that for r ∈ X, limn→∞ N̂sn = N̂r

and limn→∞ M̂sn = N̂r.
then (ii) ⇒

Hb(M̂sn , M̂r) < max

{
Hb(N̂sn , N̂r),

b

2
[Hb(M̂sn , N̂sn ) + Hb(M̂r, N̂r)],

b

2
[Hb(M̂r, N̂sn ) + Hb(M̂sn , N̂r)]

}
for b > 1

As n −→∞⇒,

⇒ Hb(N̂r, M̂r) ≤ max

{
Hb(N̂r, N̂r),

b

2
[Hb(N̂r, N̂r) +Hb(M̂r, N̂r)],

b

2
[Hb(M̂r, N̂r) +Hb(N̂r, M̂r)]

}
≤ b

2
Hb(M̂r, N̂r)

≤ b

2
Hb(M̂r, N̂r)

(1− b

2
)Hb(M̂r, N̂r) ≤ 0

⇒ Hb(M̂r, N̂r) = 0

Hence M̂r = N̂r,

since M̂ and N̂ are weakly compatible therefore M̂M̂r = M̂N̂r this implies that

M̂M̂r = N̂M̂r = M̂N̂r = N̂N̂r

Finally, to prove M and N has a common fixed point first we have to prove that

M̂ and N̂ has a common fixed point.
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Hb(M̂r, M̂M̂r) ≤ max

{
Hb(N̂r, N̂M̂r),

b

2
[Hb(M̂r, N̂r) + Hb(M̂M̂r, N̂M̂r)],

b

2
[Hb(M̂M̂r, N̂r) + Hb(M̂r, N̂M̂r)]

}
≤ max

{
Hb(M̂r, M̂M̂r),

b

2
[Hb(M̂r, M̂r) + Hb(M̂M̂r, M̂M̂r)],

b

2
[Hb(M̂M̂r, M̂r) + Hb(M̂r, M̂M̂r)]

}
≤ max

{
Hb(M̂r, M̂M̂r), bHb(M̂M̂r, M̂r)

}
≤ bHb(M̂r, M̂M̂r)

(1− b)Hb(M̂r, M̂M̂r) ≤ 0

⇒ Hb(M̂r, M̂M̂r) = 0

⇒ M̂r = M̂M̂r also N̂M̂r = M̂r,

Similarly, M̂X is a complete subspace of X as M̂X ⊆ N̂X.

∵ r is a common fixed point of M̂andN̂

∴ r is also a fixed point of M and N.

Remark 4.2.6. Theorem 3.2.9 becomes a special case of Theorem 4.2.5 by taking

b = 1.

4.3 Conclusion

In this thesis, our work is started with the review of litrature related to fixed

point theory. Several papers are reviewed but we focused on the paper [23] titled

as “Common fixed point theorems for fuzzy mappings” in metric space which is

the main task of our work. Then we extended it in the settings of b- metric space.

First we start from already existing results then we expand them in accordance

with the definition of b- metric spaces and reached at the results. These results

might be helpful for solving certain problems related to fuzzy mappings in b-metric

spaces.
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